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Abstract

Flooding is among the most catastrophic and common natural events. It not only endangers human 
lives, their livelihoods, and possessions but also devastates the nation’s economy. Increased flooding 
is an inevitable consequence of climate change. Hence, Identification of flood suspectable hotspots is 
vital for flood risk management along with disaster handling. The primary objective of this research 
is to use a frequency ratio model to classify flood-prone zones in two provinces of Pakistan. The flood 
inventory map was developed using 230 flood location points in Northern Sindh and Southern Punjab. 
Aspect, profile curvature, elevation, slope, normalized difference vegetation index (NDVI), normalized 
difference soil index (NDSI), distance from the road, distance from the river, land use/land cover 
(LULC) and rainfall were among the ten (10) determining factors. The data were randomly divided 
into two distinct datasets, with 70% flood points (161) used for inventory formulation and the other 30% 
(69 flood points) for result validation. The flood vulnerability map was categorized into five different 
zones ranging from very low (19.73%) to very high (20.37%) susceptibility range. The area under the 
receiver operating characteristic curve (ROC) and area under curve (AUC) was used to demonstrate 
the prediction result that yielded a reasonable score of 77.4%. The study suggested that in comparison 
to other studied districts, Jacobabad is the most prone region with acute vulnerability and constrained 
resilience. The presented data can serve as a source for tracking, assessing, and predicting potential 
flood activity in the area and could be beneficial for planners and decision-makers involved in early 
disaster response planning within the country. 
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Introduction

Every year, various natural disasters such as 
earthquakes, floods, drought, and landslides cause a 
large number of deaths and property damage around 
the world [1]. Among all other disasters, flooding is 
one of the most destructive natural disasters that occur 
when a large amount of water exceeds its usual limits, 
inundating river banks and causing water retention for 
a short period [2]. Floods are a major factor destroying 
the environment, transportation systems, agriculture, 
sociocultural and human life accounting for almost 40% 
of all-natural disaster losses [3-5]. The size of the flood 
is one of the most significant aspects while increased 
harm has been attributed to urbanization and population 
growth along rivers and decline in forest areas. Poor 
infrastructure, social mentality, low resilience, and 
deficiency of long-term mitigation steps are also 
among important determining factors [6, 7]. Almost  
one-third of the world’s land area is vulnerable to the 
risk of flooding [8]. Flood-related damages caused 32% 
of human and environmental harm between 1963 and 
1992 and affected an average of 99 million people from 
2000 to 2008 [9]. China is the most affected country, 
in terms of facing the social and economic effects of 
flooding [10, 11] Failure of the dam as a result of the 
heavy rains has also triggered floods in downstream 
areas. In 1979, the collapse of the Machu dam in 
marvi, Saurashtra, resulted in immense losses of land, 
crops, livestock, and approximately 10,000 human live 
[12]. Unless appropriate flood prevention measures are 
taken, the number of people vulnerable to catastrophic 
flooding will continue to increase [13]. 

Between 2000 and 2013, Pakistan was hit by  
25 natural disasters, the most prevalent of which 
were floods, earthquakes, and landslides [14]. Floods 
were particularly severe in 1942, 1956, 1957, 1958, 
1973, 1975, 1976, 1979, 1992, 1994, 1995, 2003, 2005, 
2007, 2010, 2011, and 2013. One of the worst floods in 
Pakistan’s history hit in August 2010, while between 
1947 and 2010 approximately 8000 people died and 
approximately $10 billion was lost in economic losses 
[15]. Summer floods in Pakistan are mostly caused by 
monsoon rainfall. The historical 2010-11 floods in the 
study region were the worst in terms of severe and 
extended rainfall, large flood discharge, the number 
of people impacted and their property destruction 
[16]. Abnormal rainfall was recorded by almost all the 
metrological stations in the country and the main cause 
behind this disastrous flooding was the consecutive 
rainfall for four days (27-30 July) [17]. During 2010, 
2011, and 2013 years, there have been riverine floods 
in Northern Sindh and Southern Punjab areas.   
The Districts of Northern Sindh, Jacobabad, Larkana, 
and Sukkur were badly affected.  Similarly, in summer 
2010, unusually heavy rain and river breaches in 
the Sothern Punjab’s District Rahimyar Khan and 
Bahawalpur caused an unprecedented riverine flood. 
Structures were destroyed, irrigation channels and 

linking roads were damaged, crops and orchards were 
washed away [18]. 

Flooding is a devastating natural hazard that is 
almost impossible to fully eradicate, modeling flood 
susceptibility is one of the latest strategies used for 
dealing with flood disasters. Remote sensing and 
GIS software techniques have become increasingly 
popular in recent decades because they add a whole 
new dimension to risk assessment and justification. 
Satellite image analysis on the RS and GIS platforms 
yielded adequate results for flood susceptibility and 
vulnerability mappings as it provides an incredible 
environment to run and manipulate a wide range of 
models to assess flood vulnerability with rational 
and reliable results [19]. It is critical to develop flood 
susceptibility mapping and flood risk assessments as 
it can enable government officials and planners to 
develop appropriate flood control plans and propose 
management schemes for reducing flood vandalism in 
the future [20].

Study Area

(Fig. 1) Punjab’s climate is vulnerable, because of 
its geographical position, low adaptability, and a high 
reliance on the natural surroundings. This province has 
an estimated population of 93 million people.

Sindh is Pakistan’s most heavily inhabited and 
urbanized province, accounting for 24% of the 
country’s overall population. Sindh’s population grew 
from 41.248 million people in 2010 to 45.998 million 
people in 2015 [21]. Due to monsoon and the Indus 
River, Northern Sindh and Southern Punjab’s floodplain 
are susceptible to recurrent flooding during the summer 
season. Because it flows along a ridge, the Indus River 
in Northern Sindh and Southern Punjab is treacherous. 
It is known for its ability to change course and the 
outflowing water once breached cannot be discharged 
back into the river [15]. A considerable number of 
villages are existent next to the river catchment and 
population settlements are encroaching toward risky 
locations in the study area [22]. Historical data indicate 
that three extreme and fourteen moderate riverine and 
flash flood incidences occurred between 1942 and 2013 
in Pakistan’s northern Sindh and Southern Punjab 
region, which destroyed natural resources and thousands 
of lives [23]. There is a lack of flood susceptibility 
assessment and mapping. To emphasize this problem, 
attempts were made to research certain factors to better 
identify and forecast areas that are more vulnerable 
to flooding. This study was conducted to find out the 
future susceptibility of flood disasters in the chosen 
study areas that include Bahawalpur and Rahim yar 
Khan in southern Punjab and Sukkur, Larkana and 
Jacobabad in Northern Sindh. The main goal of the 
study is to examine flood-prone areas and the usage of 
frequency ratio (FR) model to create flood vulnerability 
map for selected regions. The FR model is a GIS-based 
method that is known to generate scientifically valid 
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flood susceptibility maps [24]. Flood risk modeling 
is crucial for its management [25]. It involves various 
relevant factors such as drainage, density, slope, land 
use, elevation, rainfall deviation, lithology, and land 
use/cover. All these factors can be used with the help 
of the FR model to identify very high to very low 
susceptibility zones. These findings will be useful to 
planners, researchers, and local governments for impact 
assessments to predict future potential flood zones and 
activity in the area and could be beneficial for planners 
and decision-makers involved in early disaster response 
planning within the country. 

Experimental 

Materials and Methods

The flood susceptibility modelling involves a number 
of steps. The presented flow chart demonstrates the 
summary of the followed methodology that consist of 
four main steps including spatial database preparation, 
flood inventory mapping, origination of flood 
conditioning factors and bivariate statistical analysis 
of the flood conditioning factors using frequency ratio 
modeling.

Spatial Database Preparation

The spatial database preparation is a significant step 
in the flood vulnerability and susceptibility analysis 
process, as it entails the collection of appropriate 
factors of floods [26]. Floods cannot be caused by 

a single factor in most cases. Many parameters like 
climate and geomorphologic composition regularize 
the occasion of floods and their intensity [27]. The 
multi-criteria analysis MCA-based flood susceptibility 
and susceptibility assessment will be more reliable 
and authenticate instead of single criteria-based flood 
susceptibly analysis [28, 29]. (Table 1) (Fig. 2).

Flood Inventory Map

The precision with which flood events are recorded 
has a huge effect on the mapping of flood vulnerability 
and susceptibility [30]. A total of 230 location points 
for flood were chosen for the inventory. Since using 
the polygon layout of the catalog is challenging for 
the algorithm and results amplification, random points 
were used in the study. This format for Inventory data 
has been used in the majority of related natural hazard 
modeling [31]. For training and testing, the map was 
divided into 70% -30% ratios [32]. Training locations 
(161 points) were chosen at random for the generation 
of the dependent results, which consisted of 0 and 1 
values, with 1 indicating the presence of flooding and 
0 indicating the nonexistence of flooding. As a non-
flooding point, equivalents of 69 points were selected. 
(Fig. 3).

Flood Conditioning Factors

It is very critical to identify the important factors 
that influence flood occurrence in establishing 
flood susceptibility maps [33]. As a result, in flood 
susceptibility modeling ten (10) conditioning factors 

Fig. 1. Map of the study area.
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with 30* 30-mpixel size were used: (1) Aspect, (2) Slope, 
(3) Elevation, (4) Profile Curvature, (5) Normalized 
Difference Soil Index (NDSI), (6) Normalized 
Difference Vegetation Index (NDVI), (7) Distance from 
the river, (8) Distance from the road, (9) Land use land 
cover map (LULC), and (10) Rainfall. It’s essential to 
note that topographic data has a significant effect on 
modeling results and that a lot of research is limited 
by a lack of accurate topographic data [34]. Derivative 
factors and topography play a significant role in 
determining flood susceptibility and vulnerability [35]. 

(Fig. 4) Previous 29 years’ data of mean annual 
rainfall (1989-2018) was taken from the Pakistan 

metrological Department (PMD). Digital elevation 
model (DEM) is one of the most useful techniques for 
flood prediction which provides a three-dimensional 
view of the ground surface terrain. The DEM for the 
study districts was obtained by the Shuttle Radar 
Topography Mission SRTM with a resolution of 30 m 
obtained from Earth Atmosphere and NASA (http://
www.dwtkns.com/srtm30m). The Euclidean distance 
tool of the Spatial Analyst tool in ArcMap 10.2 was 
used to establish the layers of distance from rivers and 
distance from roads. The profile curvature (Fig. 4d) was 
used in this analysis because it influences the flow rate 
of water draining the soil. ArcMap measured it using 

Fig. 2. Flow chart of the methodology for preparing flood susceptibility map.

Table 1. Flood predicting factors and their cell size.

Parameters Sub-classification Resolution

Flood record area’s Flood extent Point coordinates

Elevation (m) 30 m

Slope angle (Degree) 30 m

Aspect 30 m

Profile curvature 30 m

Flood predicting factors Distance from road (m) 30 m

Distance from river (m) 30 m

NDSI 30 m

NDVI 30 m

Mean annual rainfall (mm) 30 m
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the spatial analyst tool. The vegetation and soil are also 
essential factors in determining flood susceptibility [34]. 
The Normalized Difference Vegetation Index (NDVI) 
and the Normalized Difference Soil Index (NDSI) were 
calculated and gained by using different bands from 
Landsat 8 OLI satellite images assembled by the USGS 
EROS data center by using diverse bands from Landsat 
8 OLI satellite images. NDSI Fig. 4f) is an analytical 
method for improving soil data from vegetation and 
impermeable surfaces. It was calculated using the 
band ratio method in ArcGIS (Raster calculator) to 
distinguish soil from other ground cover forms to a 
degree, with high values indicating exposed soil areas 
and low values indicating other categories which also 
include vegetated areas [36]. NDVI Fig. 4e) was also 
determined to illustrate the differences in vegetation’s 
spectral responses in the red plus near-infrared bands 
low values contribute to bare areas of rock/sand or 
snow and high values suggest temperate rainforests 
and tropical rainforests. Equations (1) and (2) were then 
used to calculate respectively.

                 (1)

                (2)

Frequency Ratio Model

It is very critical to differentiate the conditioning 
factors and conditions which can trigger flooding 
when determining the probability of flooding over a 
specific period in a particular environment [37]. For 
flood susceptibility mapping, there are several models 
and techniques from which to choose. The frequency 
ratio model [38] is a highly suitable technique for 
hazards identification amid a high exactness rate.  

The frequency ratio (FR) is a method of bivariate 
statistical analysis (BSA), in which each class of a 
parameter is assigned a value, and its effect on flood 
occurrence is assessed [39]. The FR approach was 
used in conjunction with GIS techniques to conduct 
the study of flood vulnerability and susceptibility. For 
BSA, FR is a very reliable method since it considers 
the effect of every conditioning factor on flooding 
and assigns weights very accurately. The FR method 
is determined by the relationship b/w flooding spread 
and every conditioning factor, and it is used to show 
the relationship between flood locations and floods 
conditioning factors in the research study field. If the 
FR value is greater than 1, the percentage of flooding is 
greater than the region, indicating a stronger correlation; 
however, values less than 1 indicate a weaker correlation 
[40]. The evaluation of flood susceptibility mapping is 
critical for identifying flood-related factors. Historical 
flooding events and their triggering parameters may 
be used to derive the relationship between flood and 
linked conditioning factors that can cause flooding 
[41]. The assessment of flood susceptibility mapping is 
critical for identifying flood-related factors. Historical 
flooding events and their triggering parameters may 
be used to derive the relationship between floods and 
linked conditioning factors that can cause flooding.  
The Flood Frequency Ratio (FR) is determined by 
looking at the relationship b/w flood events and the 
factors that provide the reasons. As a result, the FR of 
each class of each conditioning factor was determined 
concerning earlier flood occurrence as shown in 
Table 2. Frequency Ratio (FR) values were obtained and 
calculated by via following given formula (3):

 
(3)

Fig. 3. Flood inventory map of the study area.
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Fig. 4. Predicting factors of flood susceptibility map: a) Elevation, b) Slope, c) Aspect, d) Profile curvature, e) NDVI, f) NDSI,  
g) Distance from road, h) Distance from road, i) LULC, j) Mean annual rainfall.
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After calculating the Frequency Ratio values for 
each class, every controlling factor added all of the 
values together to generate the final flood vulnerability 
or susceptibility map. The flood risk map formula is 
given:

In the next step, the FR is normalized as the relative 
frequency (RF) for a range of probability levels [0, 1] 
using equation (4).

              (4)

After normalization, the RF also has the downside 
of assigning equal weight to all causative variables. 
To solve this trouble and discover the mutual 
interdependence of flood contributory factors, a (PR) 
predictor rate or weight was determined by ranking 
each flood contributory factor using the training data 
set equation (5).

 (5)

Table 2. Calculation results of FR and RF for all classes of factors.

Factors Factor classes No of points % of points Class area % of class area FR RF

Elevation

1 6220113 86.81 300.41835 98.5 2.5 0.69

2 443751 6.19 2.143223 0.7 8.57 0.23

3 2591941 3.61 1.251596 0.4 1.82 0.05

4 174696 2.43 0.843745 0.3 2.47 0

5 66895 0.93 0.323089 0.1 2.57 0

Slope

1 10608913 13.6 0.092251 21.8 9.7 0.31

2 15176643 19.46 0.103423 24.44 7.57 0.24

3 20461498 26.24 0.115555 27.3 6.25 0.19

4 16284928 20.88 0.069604 16.45 4.72 0.15

5 15425436 19.78 0.042273 9.99 3.04 0.09

Aspect

1 12219715 19.35 0.098066 23.13 8.92 0.23

2 10909733 17.27 0.067587 15.97 6.87 0.18

3 14383836 22.77 0.091703 21.67 7.09 0.19

4 13095650 20.73 0.084868 20.05 7.17 0.19

5 12536681 19.85 0.080866 19.11 7.17 0.19

Curvature

1 1342501 2.12 0.007027 1.66 5.95 0.17

2 3602535 5.7 0.019407 4.58 6.1 0.17

3 21251814 33.65 0.14286 33.76 7.48 0.21

4 20372308 32.26 0.154652 36.55 8.44 0.24

5 16576458 26.25 0.099145 23.43 6.63 0.19

NDVI

1 11404628 23.81 733.404549 1.37 0.13 0.37

2 11391449 23.79 23878.19214 44.9 0.07 0.22

3 12722976 26.57 12904.39117 24.26 0.02 0.08

4 12362658 25.81 7975.387359 14.99 0.02 0.06

5 11197031 23.38 7669.423643 14.44 0.08 0.25

NDSI

1 11426523 19.34 10283.85754 19.34 0.01 0.05

2 13079095 22.13 11771.17044 22.13 0.01 0.05

3 12640331 21.39 11376.28334 21.39 0.04 0.12

4 10862412 18.38 9776.15829 18.38 0.08 0.25

5 11070380 18.73 9953.32925 18.73 0.18 0.52
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Lastly, the flood susceptibility index was calculated 
by summing the PR of each factor and the RF of each 
class using equation (6).

                          (6)

where Npix(SXi) is the number of flood points in 
class I of variable X, Npix(Xj) is the integral of pixels in 
variable Xj, m is the total classes in the variable Xi, total 
factors of the study region are the n [35].

Model Validation

It is important to categorize areas that could be 
affected by potential flooding while conducting a flood 
susceptibility study. To validate the susceptibility maps 
is very important concerning known potential floods, 
despite the validation method used [42]. The region 
beneath the curve is a common, all-encompassing 
technique of assessing accurateness that can be used to 
assess forecast and success rates [43]. The justification 
or validation method was carried out by comparing 
defined flood data with the likelihood map of 
acquired flooding, using AUC [44]. This gave a strong 
classification with AUC = 1 and a random classification 
with AUC = 0.5. AUC has been used in a variety of 
experiments to assess the efficacy of susceptibility 
mapping [45]. The techniques include splitting the 

probability map into equal-area categories, with 
the performance and prediction curves determining 
each probability category. On the x-axis, percentages 
of flood-prone areas are plotted from maximum to 
minimum, and percentages of % of flood actions are 
plotted on the y-axis. A steeper curve suggests that a 
larger proportion of flood actions or events fall into 
more susceptible categories.

Results and Discussion

Several independent variables, referred to as 
factors for ideal conditions, play a precise role in 
flood susceptibility and vulnerability mapping [43]. 
All ten conditioning variables, including elevation, 
NDVI, NDSI, slope, aspect, curvature, distance from 
the path, Distance from the river, LULC, and rainfall, 
each have their spatial distribution and statistical 
database. The elevation is a significant factor in flood 
incidence as water often flows from higher locations 
to lower land areas [46]. Previous research has found 
a low likelihood of flooding in higher elevation areas 
and a high likelihood of flooding in the lowland areas 
[47]. Generally, the Frequency Ratio value will decline 
as the height of the area increases [48]. Table 2 shows 
the 2 lower elevated classes in the study region (183 m 
and 183 to 442 m) have high-Frequency Ratio values of 

Table 2. Continued.

Distance from river

1 13789599 21.83 0.13027 30.79 1.05 0.35

2 17358181 27.48 0.170938 40.4 1.09 0.36

3 16254768 25.74 0.119756 28.3 8.18 0.27

4 15743067 24.93 0.002127 0.5 1.27 0

Distance from road

1 1 0 0.068071 16.08 0 0.99

2 15338998 24.29 0.103985 24.57 7.56 9.95

3 16466134 26.07 0.12176 28.77 8.19 1.07

4 16045568 25.41 0.105401 24.91 7.29 9.59

5 15294914 24.22 0.023873 5.64 1.76 2.32

LULC

1 12730113 21.24 96.91525914 21.54 0.18 1

2 11622270 19.67 2.835608358 19.67 0.09 0.29

3 18839280 31.88 2.135449098 31.88 0.01 0.05

4 10552058 17.86 60.75866314 17.86 0 0.03

5 5335021 9.03 33.38357293 9.03 0.02 0.07

Rainfall

1 4065 10.09 0.044286 10.45 1.2 0.1

2 5478 13.6 0.173151 40.87 3.5 0.31

3 2727 6.77 0.143627 33.9 5.86 0.52

4 9529 23.66 0.051909 12.25 6.08 0

5 18470 45.86 0.010648 2.51 6.49 0
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2.5 & 8.5, respectively, indicating a high likelihood of 
flooding in low elevated areas. Flooding is less probable 
in areas with a low FR value and a high altitude [59].

Slope controls the occurrence of flooding, so low-
level land areas in rainy spells have a close link to the 
flood situation. Flooding and flood events are more 
likely to occur when the slope gradient is lower [50]. 
The infiltration method is often influenced by the 
gradient of the slope. An increasing gradient reduces 
penetration but surface runoff increases; so the result, 
in areas with abrupt descent gradient, a large amount 
of water becomes inactive, resulting in flooding [51]. 
The findings show that the two lower slope gradient 
grades, <2.39° and 2.39°-5.31°, respectively, have the 
maximum FR values of 9.7 and 5.7. The slope gradient 
above 24.7°, the other side shows the lowest FR value 
of 3.04. 2) Table. Approximately 59.3% of strong floods 
occurred in study areas with a slope of less than 12.1%. 
Since the aspect is linked to physiographic trends and 
soil moisture patterns, it can be useful in hydrologic 
situations [52]. Aspect has a significant impact on 
hydrologic processes such as evapotranspiration and 
frontal precipitation direction, as well as weathering 
and vegetation growth, particularly in drier climates 
[53]. In this study area, the results showed that ranges 
between 65 and 283 to 359 had high FR values of 8.9 
and 7.1. Curvature is also a significant element that 
reflects the topography’s morphology [54]. There are 
three different types of curvature maps. A convex 
surface has a positive curvature value, a flat and plane 
surface has a zero-curve value, and a concave surface 
has a negative curvature value [47]. The results show 
that the flat surface had the highest RF of 0.61, while 
the concave surface had the lowest RF of 0.15. (Table 2).  
It was revealed that approximately 83 percent of 
previous floods occurred on slopes with a flat or 
convex form. The NDVI is another significant flooding 

conditioning element. The index’s range values are from 
-1 to +1 [49]. According to Khosravi, an indication of 
water is shown by negative values and positive (+ve) 
values indicate vegetation, thus NDVI has a negative 
(-ve) association with flooding. Higher NDVI values 
suggest a lower or lesser flood risk, while lower NDVI 
values indicate a higher flood risk [55]. The NDVI 
values in this sample range from -0.353 to 0.018 and 
were quantile divided into five groups. The FR was 
highest at 0.13 (Table 2) for the class -0.353 to 0.018, 
indicating that flooding is likely in the study areas.

Normalized difference soil index (NDSI) was 
used to identify signature variations in the immixing 
coastal swamp from satellite imagery. Deng created the 
normalized difference soil index/(NDSI) by reversing 
the adjusted normalized difference water index/
(MNDWI), which is dependent on the high reflectance 
of bare soil in the shortwave infrared wavelength. 
Despite this, the NDSI can detect large, dry bare 
soil parcels whereas tiny, scattered parcels are often 
overlooked. The thermal infrared wavelength (TIR) 
has been used to detect bare land [56]. The findings 
showed that class levels of 0.135 to 0.225 and 0.225 
to 0.511 had high FR values of 0.88 and 0.183 in this 

Zone Class Area (km2) Area %

Very low 31-44 10495 19.73

Low 44-48 10831 20.37

Moderate 48-53 10835 20.37

High 53-59 10572 19.88

Very high 59-72 10434 19.62 

Fig. 5. Flood susceptibility map using FR model.

Table 3. Flood Susceptibility zone of study area under different 
subzones.
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study area. The distance from the road is a big factor 
in flood susceptibility and vulnerability mapping. Flood 
levels are influenced significantly by impervious roads 
and adjacent urban surfaces. They reduce the terrain’s 
penetration potential and double as a runoff outlet [57]. 
According to the results, distances from the path of less 
than 0.11 m and 0.11 to 0.18 m have high FR values of 
8.1 and 7.2, respectively. The distance from the river is 
an additional factor to include when determining flood 
vulnerability since the places closest to the river bank 
are the ones that are most threatened by high water after 
a flood. In most cases, depth is estimated above the 
stream’s mouth or higher than the convergence. Every 
land region located far away from the stream’s mouth 
or confluence is classified as low risk, while an area 
located close to the stream’s convergence is classified as 
high risk [58]. The maximum FR values in this study 
area are 8.18 and 1.27, respectively, with class levels 
between 0.45 and 0.68 and 0.68 and 1.04. The rainfall is 
merely a source of water in the study area, apart from 
glaciers. In semi-arid areas, sudden rainfall can trigger 
flash floods [59]. A significant number of earlier studies 
have found a connection between flooding and rainfall 
[60].In every region, the quantity of rainfall is the main 
significant cause of flooding. No one expects the rain 
to cause flooding [46]. In this study area, it is noted 
that the FR value (6.4) is high in areas with lots of rain 
(130.1 to 177.1 mm).

Land use patterns are shown as humans and natural 
cycles [49]. Runoff is increased in urban areas because 
of the extensive impervious soil, and it is increased in 
fallow agriculture because near is little vegetation to 
regulate and avoid the rapid release of water into the 
soil surface. Those areas are the most susceptible and 
vulnerable to floods and they are in danger of flooding 
and also soil erosion. Because of their economic wealth, 
housing, and high population, built-up areas along 
rivers are the most prone to floods [61]. In the study 

area, the high FR values observed in water bodies 
and agricultural land are 0.18 and 0.095, respectively, 
indicating that unprotected areas are highly susceptible 
and vulnerable to flooding. (Fig. 5)

(Table 3) The ratings for each subclass of all 
conditioning parameters are dependent on the 
Frequency Ratio values presented in Table 2.  
The vulnerable groups range from extremely high 
to extremely high, and they are mainly concentrated  
in the study area’s middle (Fig. 5). Higher runoff 
potentiality, poor to very poorly drained soil, lower 
slope gradient, lower elevation, alluvial deposits, 
braided flood plain, and closer proximity to the main 
river define these high to very high flood susceptibility 
areas, which are significant conditioning factors for 
flood vulnerability and susceptibility mapping using 
the Frequency Ratio (FR) model. Several models are 
suggested and proposed by various researchers, but it is 
critical to assess the model’s accuracy and success rate 
to validate it for flood susceptibility and vulnerability 
analysis. In terms of success rate and prediction and 
forecast accuracy, the FR model’s performance is 
validated [42]. The maximum accuracy of 1.0, indicating 
that the model was capable of accurately predicting 
natural hazards without bias [62]. The accuracy 
prediction was calculated using the remaining 69 flood 
points that were not used during the model building and 
the success rate was calculated using 161 training flood 
points. Susceptibility classes ranging from ‘moderate’ 
to ‘very high’ are considered as possible floods that 
could happen in the future.

Validation through the Area under the Curve 
(AUC)

The flood forecast rate is determined by the 
prediction or forecasting curve. As a consequence, 
it must be evaluated as a necessary result and output 

Fig 6. AUC for model performance and validation.
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of a model to determine flood vulnerability and 
susceptibility mapping performance [2]. (Fig. 5)  
The AUC parameter was used to validate the model  
in this analysis, which plots factual positive rate on the 
y-axis against fake positive rate on the x-axis and was 
calculated using equation (7):

                       (7)

Where P represents the entire integer of floods 
while N represents the total integer of non-floods, and 
TP and TN indicate the number of pixels properly 
classified [63]. In the validation process, 30% of the 
total number of flood points were used. After review, 
the AUC for the model was 0.774 indicating a success 
rate of 0.77 percent. Despite the input data limitations 
and precision, this percentage was deemed satisfactory.  
It also describes how well the frequency ratio  
model and factors worked in the study area or predicted 
floods.

Conclusion

Flood vulnerability mapping analysis is critical for 
reducing destructive floods through the implementation 
of authentic solutions. Flood susceptibility data 
is a valuable tool for planners when it comes to 
implementing proper land use in flood-prone areas. 
The aim and intentions of this study are to be aware 
of the interconnection of flood frequency and flood 
factor variables in Southern Punjab and Northern 
Sindh, Pakistan, using a BSA-based FR model. Ten 
conditioning factors were taken, including slope, aspect, 
profile curvature, elevation, NDVI, NDSI, distance 
from the road, distance from the river, LULC, and 
rainfall, and individual layers were created with 30 m2 
resolution based on the flood inventory map. For the 
creation of the layers, a random sampling technique 
was used to pick (161) 70% of the overall flood point 
and (69) 30% for validation. The accuracy with which 
factor layers are prepared is crucial to the validation 
of flood-prone mapping. The final flood vulnerability 
map was divided into five zones: very low (19.73%), 
low (20.37%), moderate (20.37%), high (19.88%), and 
very high (19.62%) respectively. As compared to other 
districts such as Larkana, Rahimyar Khan, Sukkur, 
and Bahawalpur, Jacobabad has a high susceptible 
district for floods. This region is highly sensitive,  
and the adaptive capacity is very low. The high to 
the very high zone is mainly seen in the study area’s 
middle. Higher runoff potentiality, alluvial deposits, 
poor to very poorly drained soil, braided food plain, 
lower elevation, lower slope, and proximity to the 
central river define these moderate to very high food 
susceptibility areas, which are significant conditioning 
factors for flood susceptibility. Susceptibility, which 
varies from “high” to “very high” is recognized  

as a possible future flood. The ROC curve was used 
to assess and measure the significance of the current 
Frequency Ratio model for vulnerability mapping. 
The product reveals that the approach used in this 
study provides consistent and correct results, with 
a performance rate of 77.4%. As a result, it can be 
accomplished that precision of the conditioning variables 
has a significant effect on flood susceptibility mapping 
since as the normal level of parameters improves, the 
accuracy of the model improves as well. Low slope 
(-2.15°-2.39°), low elevation (-68-183 m), and high 
NDVI (-0.353-0.018) are the most significant parameters 
and classes for flood-prone areas of southern Punjab 
and northern Sindh. There is a dire need to realize 
the trends of climatic extreme events especially floods 
and pursue the recommended adaptation strategies to 
manage such extremes in the future. By identifying 
flood-prone zones, this representation of the model 
will assist the government officers, planners, decision-
makers, and legislatures in implementing appropriate 
administrative plans in the research area and limiting 
the development process.
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